Ginkgo Generated from branch based on main. Ginkgo version 1.9.0
A numerical linear algebra library targeting many-core architectures
 
Loading...
Searching...
No Matches
ilu.hpp
1// SPDX-FileCopyrightText: 2017 - 2024 The Ginkgo authors
2//
3// SPDX-License-Identifier: BSD-3-Clause
4
5#ifndef GKO_PUBLIC_CORE_PRECONDITIONER_ILU_HPP_
6#define GKO_PUBLIC_CORE_PRECONDITIONER_ILU_HPP_
7
8
9#include <memory>
10#include <type_traits>
11
12#include <ginkgo/core/base/abstract_factory.hpp>
13#include <ginkgo/core/base/composition.hpp>
14#include <ginkgo/core/base/exception.hpp>
15#include <ginkgo/core/base/exception_helpers.hpp>
16#include <ginkgo/core/base/lin_op.hpp>
17#include <ginkgo/core/base/precision_dispatch.hpp>
18#include <ginkgo/core/config/config.hpp>
19#include <ginkgo/core/config/registry.hpp>
20#include <ginkgo/core/factorization/par_ilu.hpp>
21#include <ginkgo/core/matrix/dense.hpp>
22#include <ginkgo/core/preconditioner/isai.hpp>
23#include <ginkgo/core/preconditioner/utils.hpp>
24#include <ginkgo/core/solver/gmres.hpp>
25#include <ginkgo/core/solver/ir.hpp>
26#include <ginkgo/core/solver/solver_traits.hpp>
27#include <ginkgo/core/solver/triangular.hpp>
28#include <ginkgo/core/stop/combined.hpp>
29#include <ginkgo/core/stop/iteration.hpp>
30#include <ginkgo/core/stop/residual_norm.hpp>
31
32
33namespace gko {
34namespace preconditioner {
35namespace detail {
36
37
38template <typename LSolverType, typename USolverType>
39constexpr bool support_ilu_parse =
40 std::is_same<typename USolverType::transposed_type, LSolverType>::value &&
41 (is_instantiation_of<LSolverType, solver::LowerTrs>::value ||
42 is_instantiation_of<LSolverType, solver::Ir>::value ||
43 is_instantiation_of<LSolverType, solver::Gmres>::value ||
44 is_instantiation_of<LSolverType, preconditioner::LowerIsai>::value);
45
46
47template <typename Ilu,
48 std::enable_if_t<!support_ilu_parse<typename Ilu::l_solver_type,
49 typename Ilu::u_solver_type>>* =
50 nullptr>
51typename Ilu::parameters_type ilu_parse(
52 const config::pnode& config, const config::registry& context,
53 const config::type_descriptor& td_for_child)
54{
55 GKO_INVALID_STATE(
56 "preconditioner::Ilu only supports limited type for parse.");
57}
58
59template <
60 typename Ilu,
61 std::enable_if_t<support_ilu_parse<typename Ilu::l_solver_type,
62 typename Ilu::u_solver_type>>* = nullptr>
63typename Ilu::parameters_type ilu_parse(
64 const config::pnode& config, const config::registry& context,
65 const config::type_descriptor& td_for_child);
66
67} // namespace detail
68
69
119template <typename LSolverType = solver::LowerTrs<>,
120 typename USolverType = solver::UpperTrs<>, bool ReverseApply = false,
121 typename IndexType = int32>
122class Ilu : public EnableLinOp<
123 Ilu<LSolverType, USolverType, ReverseApply, IndexType>>,
124 public Transposable {
125 friend class EnableLinOp<Ilu>;
126 friend class EnablePolymorphicObject<Ilu, LinOp>;
127
128public:
129 static_assert(
130 std::is_same<typename LSolverType::value_type,
131 typename USolverType::value_type>::value,
132 "Both the L- and the U-solver must use the same `value_type`!");
133 using value_type = typename LSolverType::value_type;
134 using l_solver_type = LSolverType;
135 using u_solver_type = USolverType;
136 static constexpr bool performs_reverse_apply = ReverseApply;
137 using index_type = IndexType;
138 using transposed_type =
139 Ilu<typename USolverType::transposed_type,
140 typename LSolverType::transposed_type, ReverseApply, IndexType>;
141
142 class Factory;
143
145 : public enable_parameters_type<parameters_type, Factory> {
149 std::shared_ptr<const typename l_solver_type::Factory>
151
155 std::shared_ptr<const typename u_solver_type::Factory>
157
161 std::shared_ptr<const LinOpFactory> factorization_factory{};
162
163 GKO_DEPRECATED("use with_l_solver instead")
164 parameters_type& with_l_solver_factory(
165 deferred_factory_parameter<const typename l_solver_type::Factory>
166 solver)
167 {
168 return with_l_solver(std::move(solver));
169 }
170
171 parameters_type& with_l_solver(
173 solver)
174 {
175 this->l_solver_generator = std::move(solver);
176 this->deferred_factories["l_solver"] = [](const auto& exec,
177 auto& params) {
178 if (!params.l_solver_generator.is_empty()) {
179 params.l_solver_factory =
180 params.l_solver_generator.on(exec);
181 }
182 };
183 return *this;
184 }
185
186 GKO_DEPRECATED("use with_u_solver instead")
187 parameters_type& with_u_solver_factory(
188 deferred_factory_parameter<const typename u_solver_type::Factory>
189 solver)
190 {
191 return with_u_solver(std::move(solver));
192 }
193
194 parameters_type& with_u_solver(
195 deferred_factory_parameter<const typename u_solver_type::Factory>
196 solver)
197 {
198 this->u_solver_generator = std::move(solver);
199 this->deferred_factories["u_solver"] = [](const auto& exec,
200 auto& params) {
201 if (!params.u_solver_generator.is_empty()) {
202 params.u_solver_factory =
203 params.u_solver_generator.on(exec);
204 }
205 };
206 return *this;
207 }
208
209 GKO_DEPRECATED("use with_factorization instead")
210 parameters_type& with_factorization_factory(
211 deferred_factory_parameter<const LinOpFactory> factorization)
212 {
213 return with_factorization(std::move(factorization));
214 }
215
216 parameters_type& with_factorization(
217 deferred_factory_parameter<const LinOpFactory> factorization)
218 {
219 this->factorization_generator = std::move(factorization);
220 this->deferred_factories["factorization"] = [](const auto& exec,
221 auto& params) {
222 if (!params.factorization_generator.is_empty()) {
223 params.factorization_factory =
224 params.factorization_generator.on(exec);
225 }
226 };
227 return *this;
228 }
229
230 private:
231 deferred_factory_parameter<const typename l_solver_type::Factory>
232 l_solver_generator;
233
234 deferred_factory_parameter<const typename u_solver_type::Factory>
235 u_solver_generator;
236
237 deferred_factory_parameter<const LinOpFactory> factorization_generator;
238 };
239
240 GKO_ENABLE_LIN_OP_FACTORY(Ilu, parameters, Factory);
242
260 static parameters_type parse(
261 const config::pnode& config, const config::registry& context,
262 const config::type_descriptor& td_for_child =
263 config::make_type_descriptor<value_type, index_type>())
264 {
265 return detail::ilu_parse<Ilu>(config, context, td_for_child);
266 }
267
273 std::shared_ptr<const l_solver_type> get_l_solver() const
274 {
275 return l_solver_;
276 }
277
283 std::shared_ptr<const u_solver_type> get_u_solver() const
284 {
285 return u_solver_;
286 }
287
288 std::unique_ptr<LinOp> transpose() const override
289 {
290 std::unique_ptr<transposed_type> transposed{
291 new transposed_type{this->get_executor()}};
292 transposed->set_size(gko::transpose(this->get_size()));
293 transposed->l_solver_ =
295 this->get_u_solver()->transpose()));
296 transposed->u_solver_ =
298 this->get_l_solver()->transpose()));
299
300 return std::move(transposed);
301 }
302
303 std::unique_ptr<LinOp> conj_transpose() const override
304 {
305 std::unique_ptr<transposed_type> transposed{
306 new transposed_type{this->get_executor()}};
307 transposed->set_size(gko::transpose(this->get_size()));
308 transposed->l_solver_ =
310 this->get_u_solver()->conj_transpose()));
311 transposed->u_solver_ =
313 this->get_l_solver()->conj_transpose()));
314
315 return std::move(transposed);
316 }
317
323 Ilu& operator=(const Ilu& other)
324 {
325 if (&other != this) {
327 auto exec = this->get_executor();
328 l_solver_ = other.l_solver_;
329 u_solver_ = other.u_solver_;
330 parameters_ = other.parameters_;
331 if (other.get_executor() != exec) {
332 l_solver_ = gko::clone(exec, l_solver_);
333 u_solver_ = gko::clone(exec, u_solver_);
334 }
335 }
336 return *this;
337 }
338
345 Ilu& operator=(Ilu&& other)
346 {
347 if (&other != this) {
349 auto exec = this->get_executor();
350 l_solver_ = std::move(other.l_solver_);
351 u_solver_ = std::move(other.u_solver_);
352 parameters_ = std::exchange(other.parameters_, parameters_type{});
353 if (other.get_executor() != exec) {
354 l_solver_ = gko::clone(exec, l_solver_);
355 u_solver_ = gko::clone(exec, u_solver_);
356 }
357 }
358 return *this;
359 }
360
365 Ilu(const Ilu& other) : Ilu{other.get_executor()} { *this = other; }
366
372 Ilu(Ilu&& other) : Ilu{other.get_executor()} { *this = std::move(other); }
373
374protected:
375 void apply_impl(const LinOp* b, LinOp* x) const override
376 {
377 // take care of real-to-complex apply
379 [&](auto dense_b, auto dense_x) {
380 this->set_cache_to(dense_b);
381 if (!ReverseApply) {
382 l_solver_->apply(dense_b, cache_.intermediate);
383 if (u_solver_->apply_uses_initial_guess()) {
384 dense_x->copy_from(cache_.intermediate);
385 }
386 u_solver_->apply(cache_.intermediate, dense_x);
387 } else {
388 u_solver_->apply(dense_b, cache_.intermediate);
389 if (l_solver_->apply_uses_initial_guess()) {
390 dense_x->copy_from(cache_.intermediate);
391 }
392 l_solver_->apply(cache_.intermediate, dense_x);
393 }
394 },
395 b, x);
396 }
397
398 void apply_impl(const LinOp* alpha, const LinOp* b, const LinOp* beta,
399 LinOp* x) const override
400 {
402 [&](auto dense_alpha, auto dense_b, auto dense_beta, auto dense_x) {
403 this->set_cache_to(dense_b);
404 if (!ReverseApply) {
405 l_solver_->apply(dense_b, cache_.intermediate);
406 u_solver_->apply(dense_alpha, cache_.intermediate,
407 dense_beta, dense_x);
408 } else {
409 u_solver_->apply(dense_b, cache_.intermediate);
410 l_solver_->apply(dense_alpha, cache_.intermediate,
411 dense_beta, dense_x);
412 }
413 },
414 alpha, b, beta, x);
415 }
416
417 explicit Ilu(std::shared_ptr<const Executor> exec)
418 : EnableLinOp<Ilu>(std::move(exec))
419 {}
420
421 explicit Ilu(const Factory* factory, std::shared_ptr<const LinOp> lin_op)
422 : EnableLinOp<Ilu>(factory->get_executor(), lin_op->get_size()),
423 parameters_{factory->get_parameters()}
424 {
425 auto comp =
426 std::dynamic_pointer_cast<const Composition<value_type>>(lin_op);
427 std::shared_ptr<const LinOp> l_factor;
428 std::shared_ptr<const LinOp> u_factor;
429
430 // build factorization if we weren't passed a composition
431 if (!comp) {
432 auto exec = lin_op->get_executor();
433 if (!parameters_.factorization_factory) {
434 parameters_.factorization_factory =
435 factorization::ParIlu<value_type, index_type>::build().on(
436 exec);
437 }
438 auto fact = std::shared_ptr<const LinOp>(
439 parameters_.factorization_factory->generate(lin_op));
440 // ensure that the result is a composition
441 comp =
442 std::dynamic_pointer_cast<const Composition<value_type>>(fact);
443 if (!comp) {
444 GKO_NOT_SUPPORTED(comp);
445 }
446 }
447 if (comp->get_operators().size() == 2) {
448 l_factor = comp->get_operators()[0];
449 u_factor = comp->get_operators()[1];
450 } else {
451 GKO_NOT_SUPPORTED(comp);
452 }
453 GKO_ASSERT_EQUAL_DIMENSIONS(l_factor, u_factor);
454
455 auto exec = this->get_executor();
456
457 // If no factories are provided, generate default ones
458 if (!parameters_.l_solver_factory) {
459 l_solver_ = generate_default_solver<l_solver_type>(exec, l_factor);
460 } else {
461 l_solver_ = parameters_.l_solver_factory->generate(l_factor);
462 }
463 if (!parameters_.u_solver_factory) {
464 u_solver_ = generate_default_solver<u_solver_type>(exec, u_factor);
465 } else {
466 u_solver_ = parameters_.u_solver_factory->generate(u_factor);
467 }
468 }
469
477 void set_cache_to(const LinOp* b) const
478 {
479 if (cache_.intermediate == nullptr) {
480 cache_.intermediate =
482 }
483 // Use b as the initial guess for the first triangular solve
484 cache_.intermediate->copy_from(b);
485 }
486
487
495 template <typename SolverType>
496 static std::enable_if_t<solver::has_with_criteria<SolverType>::value,
497 std::unique_ptr<SolverType>>
498 generate_default_solver(const std::shared_ptr<const Executor>& exec,
499 const std::shared_ptr<const LinOp>& mtx)
500 {
501 // half can not use constexpr constructor
502 const gko::remove_complex<value_type> default_reduce_residual{1e-4};
503 const unsigned int default_max_iters{
504 static_cast<unsigned int>(mtx->get_size()[0])};
505
506 return SolverType::build()
507 .with_criteria(
508 gko::stop::Iteration::build().with_max_iters(default_max_iters),
509 gko::stop::ResidualNorm<value_type>::build()
510 .with_reduction_factor(default_reduce_residual))
511 .on(exec)
512 ->generate(mtx);
513 }
514
518 template <typename SolverType>
519 static std::enable_if_t<!solver::has_with_criteria<SolverType>::value,
520 std::unique_ptr<SolverType>>
521 generate_default_solver(const std::shared_ptr<const Executor>& exec,
522 const std::shared_ptr<const LinOp>& mtx)
523 {
524 return SolverType::build().on(exec)->generate(mtx);
525 }
526
527private:
528 std::shared_ptr<const l_solver_type> l_solver_{};
529 std::shared_ptr<const u_solver_type> u_solver_{};
540 mutable struct cache_struct {
541 cache_struct() = default;
542 ~cache_struct() = default;
543 cache_struct(const cache_struct&) {}
544 cache_struct(cache_struct&&) {}
545 cache_struct& operator=(const cache_struct&) { return *this; }
546 cache_struct& operator=(cache_struct&&) { return *this; }
547 std::unique_ptr<LinOp> intermediate{};
548 } cache_;
549};
550
551
552} // namespace preconditioner
553} // namespace gko
554
555
556#endif // GKO_PUBLIC_CORE_PRECONDITIONER_ILU_HPP_
The EnableLinOp mixin can be used to provide sensible default implementations of the majority of the ...
Definition lin_op.hpp:879
This mixin inherits from (a subclass of) PolymorphicObject and provides a base implementation of a ne...
Definition polymorphic_object.hpp:662
Definition lin_op.hpp:117
LinOp(const LinOp &)=default
Copy-constructs a LinOp.
const dim< 2 > & get_size() const noexcept
Returns the size of the operator.
Definition lin_op.hpp:210
LinOp & operator=(const LinOp &)=default
Copy-assigns a LinOp.
std::shared_ptr< const Executor > get_executor() const noexcept
Returns the Executor of the object.
Definition polymorphic_object.hpp:234
Linear operators which support transposition should implement the Transposable interface.
Definition lin_op.hpp:433
pnode describes a tree of properties.
Definition property_tree.hpp:28
This class stores additional context for creating Ginkgo objects from configuration files.
Definition registry.hpp:167
This class describes the value and index types to be used when building a Ginkgo type from a configur...
Definition type_descriptor.hpp:39
Represents a factory parameter of factory type that can either initialized by a pre-existing factory ...
Definition abstract_factory.hpp:309
The enable_parameters_type mixin is used to create a base implementation of the factory parameters st...
Definition abstract_factory.hpp:211
static std::unique_ptr< Dense > create(std::shared_ptr< const Executor > exec, const dim< 2 > &size={}, size_type stride=0)
Creates an uninitialized Dense matrix of the specified size.
Definition ilu.hpp:240
Ilu(Ilu &&other)
Move-constructs an ILU preconditioner.
Definition ilu.hpp:372
Ilu & operator=(Ilu &&other)
Move-assigns an ILU preconditioner.
Definition ilu.hpp:345
std::shared_ptr< const l_solver_type > get_l_solver() const
Returns the solver which is used for the provided L matrix.
Definition ilu.hpp:273
static parameters_type parse(const config::pnode &config, const config::registry &context, const config::type_descriptor &td_for_child=config::make_type_descriptor< value_type, index_type >())
Create the parameters from the property_tree.
Definition ilu.hpp:260
std::unique_ptr< LinOp > conj_transpose() const override
Returns a LinOp representing the conjugate transpose of the Transposable object.
Definition ilu.hpp:303
Ilu(const Ilu &other)
Copy-constructs an ILU preconditioner.
Definition ilu.hpp:365
std::shared_ptr< const u_solver_type > get_u_solver() const
Returns the solver which is used for the provided U matrix.
Definition ilu.hpp:283
std::unique_ptr< LinOp > transpose() const override
Returns a LinOp representing the transpose of the Transposable object.
Definition ilu.hpp:288
Ilu & operator=(const Ilu &other)
Copy-assigns an ILU preconditioner.
Definition ilu.hpp:323
#define GKO_ENABLE_BUILD_METHOD(_factory_name)
Defines a build method for the factory, simplifying its construction by removing the repetitive typin...
Definition abstract_factory.hpp:394
#define GKO_ENABLE_LIN_OP_FACTORY(_lin_op, _parameters_name, _factory_name)
This macro will generate a default implementation of a LinOpFactory for the LinOp subclass it is defi...
Definition lin_op.hpp:1017
@ factory
LinOpFactory events.
Definition profiler_hook.hpp:32
The Preconditioner namespace.
Definition gauss_seidel.hpp:19
The ginkgo Solve namespace.
Definition bicg.hpp:28
The Ginkgo namespace.
Definition abstract_factory.hpp:20
typename detail::remove_complex_s< T >::type remove_complex
Obtain the type which removed the complex of complex/scalar type or the template parameter of class b...
Definition math.hpp:260
void precision_dispatch_real_complex(Function fn, const LinOp *in, LinOp *out)
Calls the given function with the given LinOps temporarily converted to matrix::Dense<ValueType>* as ...
Definition precision_dispatch.hpp:96
detail::cloned_type< Pointer > clone(const Pointer &p)
Creates a unique clone of the object pointed to by p.
Definition utils_helper.hpp:173
batch_dim< 2, DimensionType > transpose(const batch_dim< 2, DimensionType > &input)
Returns a batch_dim object with its dimensions swapped for batched operators.
Definition batch_dim.hpp:119
std::decay_t< T > * as(U *obj)
Performs polymorphic type conversion.
Definition utils_helper.hpp:307
detail::shared_type< OwningPointer > share(OwningPointer &&p)
Marks the object pointed to by p as shared.
Definition utils_helper.hpp:224
std::shared_ptr< const LinOpFactory > factorization_factory
Factory for the factorization.
Definition ilu.hpp:161
std::shared_ptr< const typename u_solver_type::Factory > u_solver_factory
Factory for the U solver.
Definition ilu.hpp:156
std::shared_ptr< const typename l_solver_type::Factory > l_solver_factory
Factory for the L solver.
Definition ilu.hpp:150