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1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any 1/0.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.
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2 Copyright

Nettle is distributed under the GNU Lesser General Public License (LGPL), see the file
COPYING.LIB for details. A few of the individual files are in the public domain. To find
the current status of particular files, you have to read the copyright notices at the top of
the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

A list of the supported algorithms, their origins and licenses:

AES The implementation of the AES cipher (also known as rijndael) is written by
Rafael Sevilla. Assembler for x86 by Rafael Sevilla and Niels Moéller, Sparc
assembler by Niels Méller. Released under the LGPL.

ARCFOUR
The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Moller. Released under the LGPL.

ARCTWO
The implementation of the ARCTWO (also known as RC2) cipher is written
by Nikos Mavroyanopoulos and modified by Werner Koch and Simon Josefsson.
Released under the LGPL.

BLOWFISH
The implementation of the BLOWFISH cipher is written by Werner Koch, copy-
right owned by the Free Software Foundation. Also hacked by Simon Josefsson
and Niels Moller. Released under the LGPL.

CAMELLIA
The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Moller. Assembler for x86 and x86_64 by
Niels Moller. Released under the LGPL.

CAST128 The implementation of the CAST128 cipher is written by Steve Reid. Released
into the public domain.

DES The implementation of the DES cipher is written by Dana L. How, and released
under the LGPL.
GOSTHASHY/

The C implementation of the GOST94 message digest is written by Aleksey
Kravchenko and was ported from the rhash library by Nikos Mavrogiannopou-
los. It is released under the MIT license.

MD2 The implementation of MD2 is written by Andrew Kuchling, and hacked some
by Andreas Sigfridsson and Niels Méller. Python Cryptography Toolkit license
(essentially public domain).

MDj This is almost the same code as for MD5 below, with modifications by Marcus
Comstedt. Released into the public domain.
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MD5 The implementation of the MD5 message digest is written by Colin Plumb. It
has been hacked some more by Andrew Kuchling and Niels Méller. Released
into the public domain.

PBKDF2 The C implementation of PBKDF2 is based on earlier work for Shishi and
GnuTLS by Simon Josefsson. Released under the LGPL.

RIPEMD160
The implementation of RIPEMD160 message digest is based on the code in
libgcrypt, copyright owned by the Free Software Foundation. Ported to Nettle
by Andres Mejia. Released under the LGPL.

SALSA20 The C implementation of SALSA20 is based on D. J. Bernstein’s reference
implementation (in the public domain), adapted to Nettle by Simon Josefsson,
and heavily modified by Niels Moller. Assembly for x86_64 and ARM by Niels
Moller. Released under the LGPL.

SERPENT
The implementation of the SERPENT cipher is based on the code in libgcrypt,
copyright owned by the Free Software Foundation. Adapted to Nettle by Simon
Josefsson and heavily modified by Niels Moller. Assembly for x86_64 by Niels
Moller. Released under the LGPL.

SHA1 The C implementation of the SHA1 message digest is written by Peter Gut-
mann, and hacked some more by Andrew Kuchling and Niels Moller. Released
into the public domain. Assembler for x86, x86_64 and ARM by Niels Moller,
released under the LGPL.

SHA2 Written by Niels Méller, using Peter Gutmann’s SHA1 code as a model. Re-
leased under the LGPL.

SHAS3 Written by Niels Moller. Released under the LGPL.

TWOFISH
The implementation of the TWOFISH cipher is written by Ruud de Rooij.
Released under the LGPL.

UMAC Written by Niels Moller. Released under the LGPL.

RSA Written by Niels Moller, released under the LGPL. Uses the GMP library for
bignum operations.
DSA Written by Niels Moller, released under the LGPL. Uses the GMP library for

bignum operations.

ECDSA Written by Niels Moller, released under the LGPL. Uses the GMP library for
bignum operations. Development of Nettle’s ECC support was funded by the
.SE Internet Fund.
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3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_
set_key (a function).

In all functions, strings are represented with an explicit length, of type unsigned, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string to
another, the argument order is length, destination pointer and source pointer. Source and
destination areas are of the same length. Source and destination may be the same, so that
you can process strings in place, but they must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.
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4 Example

A simple example program that reads a file from standard input and writes its SHA1 check-
sum on standard output should give the flavor of Nettle.

#include <stdio.h>
#include <stdlib.h>

#include <nettle/shal.h>
#define BUF_SIZE 1000

static void
display_hex(unsigned length, uint8_t *data)
{

unsigned 1i;

for (i = 0; i<length; i++)
printf ("%02x ", datalil);

printf ("\n");
}

int
main(int argc, char *xargv)
{
struct shal_ctx ctx;
uint8_t buffer [BUF_SIZE];
uint8_t digest[SHA1_DIGEST_SIZE];

shal_init(&ctx);
for (;;)
{
int done = fread(buffer, 1, sizeof(buffer), stdin);
shal_update(&ctx, done, buffer);
if (done < sizeof (buffer))
break;
}
if (ferror(stdin))
return EXIT_FAILURE;

shal_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);
return EXIT_SUCCESS;
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On a typical Unix system, this program can be compiled and linked with the command
line

gcc sha-example.c -o sha-example -lnettle
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5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -1nettle. If an application also
uses public-key algorithms, the recommended linker flags are -1hogweed -1nettle -1lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just —lhogweed, and the loader will resolve the dependencies automatically.
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6 Reference
This chapter describes all the Nettle functions, grouped by family.

6.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way  Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant
It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both these
fail the collision-resistance requirement; cryptologists have found ways to construct colliding
inputs. The recommended hash functions for new applications are SHA2 (with main variants
SHA256 and SHA512). At the time of this writing (December 2012), the winner of the
NIST SHA3 competition has recently been announced, and the new SHA3 (earlier known
as Keccak) and other top SHA3 candidates may also be reasonable alternatives.

6.1.1 Recommended hash functions

The following hash functions have no known weaknesses, and are suitable for new applica-
tions. The SHA2 family of hash functions were specified by NIST, intended as a replacement
for SHA1.

6.1.1.1 SHA256

SHA256 is a member of the SHA2 family. It outputs hash values of 256 bits, or 32 octets.
Nettle defines SHA256 in ‘<nettle/sha2.h>’.

struct sha256_ctx [Context struct]

SHA256_DIGEST_SIZE [Constant|
The size of a SHA256 digest, i.e. 32.

SHA256_DATA_SIZE [Constant|
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

void sha256_init (struct sha256_ctx *ctx) [Function]
Initialize the SHA256 state.

void sha256_update (struct sha256_ctx *ctx, unsigned length, const [Function]
uint8-t *data)
Hash some more data.
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void sha256_digest (struct sha256_ctx *ctx, unsigned length, uint8-t  [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

Earlier versions of nettle defined SHA256 in the header file ‘<nettle/sha.h>’, which is
now deprecated, but kept for compatibility.

6.1.1.2 SHA224

SHAZ224 is a variant of SHA256, with a different initial state, and with the output trun-
cated to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

struct sha224_ctx [Context struct]

SHA224 _DIGEST_SIZE [Constant|
The size of a SHA224 digest, i.e. 28.

SHA224 _DATA_SIZE [Constant|
The internal block size of SHA224. Useful for some special constructions, in particular

HMAC-SHA224.

void sha224_init (struct sha224_ctx *ctx) [Function]
Initialize the SHA224 state.

void sha224_update (struct sha224_ctx *ctx, unsigned length, const [Function]
uint8-t *data)
Hash some more data.

void sha224_digest (struct sha224_ctx *ctx, unsigned length, uint8_-t  [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

6.1.1.3 SHA512

SHAb12 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’,
for backwards compatibility).

struct shab12_ctx [Context struct]

SHA512_DIGEST_SIZE [Constant|
The size of a SHA512 digest, i.e. 64.
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SHA512_DATA_SIZE [Constant)|
The internal block size of SHA512. Useful for some special constructions, in particular
HMAC-SHA512.

void shab12_init (struct sha512_ctx *ctx) [Function]
Initialize the SHA512 state.

void shab12_update (struct sha512_ctx *ctx, unsigned length, const [Function]
uint8-t *data)
Hash some more data.

void shab12_digest (struct sha512_ctx *ctx, unsigned length, uint8_-t  [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha512_init.

6.1.1.4 SHA384
SHA384 is a variant of SHA512, with a different initial state, and with the output trun-

cated to 384 bits, or 48 octets. Nettle defines SHA384 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

struct sha384_ctx [Context struct]

SHA384_DIGEST_SIZE [Constant|
The size of a SHA384 digest, i.e. 48.

SHA384_DATA_SIZE [Constant)|
The internal block size of SHA384. Useful for some special constructions, in particular
HMAC-SHA384.

void sha384_init (struct sha384_ctx *ctx) [Function]
Initialize the SHA384 state.

void sha384_update (struct sha384_ctx *ctx, unsigned length, const [Function]
uint8_t *data)
Hash some more data.

void sha384_digest (struct sha384_ctx *ctx, unsigned length, uint8-t  [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA384_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha384_init.
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6.1.1.5 SHA3-224

The SHA3 hash functions were specified by NIST in response to weaknesses in SHA1, and
doubts about SHA2 hash functions which structurally are very similar to SHA1. The stan-
dard is a result of a competition, where the winner, also known as Keccak, was designed by
Guido Bertoni, Joan Daemen, Michagl Peeters and Gilles Van Assche. It is structurally very
different from all widely used earlier hash functions. Like SHA2, there are several variants,
with output sizes of 224, 256, 384 and 512 bits (28, 32, 48 and 64 octets, respectively).

Nettle defines SHA3-224 in ‘<nettle/sha3.h>’.

struct sha3_224_ctx [Context struct]

SHA3_224_DIGEST_SIZE [Constant|
The size of a SHA3_224 digest, i.e., 28.

SHA3_224_DATA_SIZE [Constant]
The internal block size of SHA3_224.

void sha3_224_init (struct sha3_224_ctx *ctx) [Function]
Initialize the SHA3-224 state.

void sha3_224_update (struct sha3-224_ctx *ctx, unsigned length, [Function]
const uint8-t *data)
Hash some more data.

void sha3_224_digest (struct sha3-224_ctx *ctx, unsigned length, [Function]
uint8-t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_224_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.6 SHA3-256

This is SHA3 with 256-bit output size, and possibly the most useful of the SHA3 hash
functions.

Nettle defines SHA3-256 in ‘<nettle/sha3.h>’.

struct sha3_256_ctx [Context struct]

SHA3_256_DIGEST_SIZE [Constant)]
The size of a SHA3_256 digest, i.e., 32.

SHA3_256_DATA_SIZE [Constant)]
The internal block size of SHA3_256.

void sha3_256_init (struct sha3-256_ctx *ctx) [Function]
Initialize the SHA3-256 state.

void sha3_256_update (struct sha3-256_ctx *ctx, unsigned length, [Function]
const uint8_-t *data)
Hash some more data.
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void sha3_256_digest (struct sha3-256_ctx *ctx, unsigned length, [Function]
uint8-t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.7 SHA3-384

This is SHA3 with 384-bit output size.
Nettle defines SHA3-384 in ‘nettle/sha3.h>’.

struct sha3_384_ctx [Context struct]

SHA3_384_DIGEST_SIZE [Constant|
The size of a SHA3_384 digest, i.e., 48.

SHA3_384_DATA_SIZE [Constant)|
The internal block size of SHA3_384.

void sha3_384_init (struct sha3-384_ctx *ctx) [Function]
Initialize the SHA3-384 state.

void sha3_384_update (struct sha3_-384_ctx *ctx, unsigned length, [Function]
const uint8-t *data)
Hash some more data.

void sha3_384_digest (struct sha3-384_ctx *ctx, unsigned length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_384_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.1.8 SHA3-512
This is SHA3 with 512-bit output size.
Nettle defines SHA3-512 in ‘<nettle/sha3.h>’.
struct sha3_512_ctx [Context struct]

SHA3_512_DIGEST_SIZE [Constant|
The size of a SHA3_512 digest, i.e. 64.

SHA3_512_DATA_SIZE [Constant|
The internal block size of SHA3_512.

void sha3_512_init (struct sha3_512_ctx *ctx) [Function]
Initialize the SHA3-512 state.

void sha3_512_update (struct sha3_-512_ctx *ctx, unsigned length, [Function]
const uint8_-t *data)
Hash some more data.
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void sha3_512_digest (struct sha3_-512_ctx *ctx, unsigned length, [Function]
uint8-t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

6.1.2 Legacy hash functions

The hash functions in this section all have some known weaknesses, and should be avoided
for new applications. These hash functions are mainly useful for compatibility with old
applications and protocols. Some are still considered safe as building blocks for particu-
lar constructions, e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function does not in itself
make the application insecure; if a known weakness is relevant depends on how the hash
function is used, and on the threat model.

6.1.2.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in REC
1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘<nettle/md5.h>’".

struct md5_ctx [Context struct]

MD5_DIGEST_SIZE [Constant)]
The size of an MD5 digest, i.e. 16.

MD5_DATA_SIZE [Constant)|
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MDS5.

void md5_init (struct md5_ctx *ctx) [Function]

Initialize the MD5 state.

void md5_update (struct md5_ctx *ctx, unsigned length, const uint8-t  [Function]
*data)
Hash some more data.
void md5_digest (struct md5_ctx *ctx, unsigned length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.
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6.1.2.2 MD2

MD2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

struct md2_ctx [Context struct]

MD2_DIGEST_SIZE [Constant]
The size of an MD2 digest, i.e. 16.

MD2_DATA_SIZE [Constant|

The internal block size of MD2.

void md2_init (struct md2_ctx *ctx) [Function]
Initialize the MD2 state.

void md2_update (struct md2_ctx *ctx, unsigned length, const uint8_-t  [Function]
*data)
Hash some more data.

void md2_digest (struct md2_ctx *ctx, unsigned length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

6.1.2.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MD5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘<nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

struct md4_ctx [Context struct]

MD4_DIGEST_SIZE [Constant|
The size of an MD4 digest, i.e. 16.

MD4_DATA_SIZE [Constant]

The internal block size of MDA4.

void md4_init (struct md4_ctx *ctx) [Function]
Initialize the MD4 state.

void md4_update (struct md4_ctx *ctx, unsigned length, const uintS8-t  [Function]
*data)
Hash some more data.

void md4_digest (struct md4_ctx *ctx, unsigned length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.
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6.1.2.4 RIPEMD160

RIPEMD160 is a hash function designed by Hans Dobbertin, Antoon Bosselaers, and Bart
Preneel, as a strengthened version of RIPEMD (which, like MD4 and MD5, fails the
collision-resistance requirement). It produces message digests of 160 bits, or 20 octets.
Nettle defined RIPEMD160 in ‘nettle/ripemd160.h’.

struct ripemd160_ctx [Context struct]

RIPEMD160_DIGEST_SIZE [Constant|
The size of a RIPEMD160 digest, i.e. 20.

RIPEMD160_DATA_SIZE [Constant|
The internal block size of RIPEMD160.

void ripemd160_init (struct ripemdl160_ctx *ctx) [Function]
Initialize the RIPEMD160 state.

void ripemd160_update (struct ripemdl60-ctx *ctx, unsigned length,  [Function]
const uint8_t *data)
Hash some more data.

void ripemd160_digest (struct ripemdl160_ctx *ctx, unsigned length,  [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than RIPEMD160_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as ripemd160_init.

6.1.2.5 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/shal.h>’ (and in ‘<nettle/sha.h>’, for backwards compatibility).

struct shal_ctx [Context struct]

SHA1_DIGEST_SIZE [Constant)|
The size of a SHA1 digest, i.e. 20.

SHA1_DATA_SIZE [Constant)|
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHAL.

void shal_init (struct shal_ctx *ctx) [Function]

Initialize the SHA1 state.

void shal_update (struct shal_ctx *ctx, unsigned length, const [Function]
uint8-t *data)
Hash some more data.
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void shal_digest (struct shal_ctx *ctx, unsigned length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as shal_init.

6.1.2.6 GOSTHASHY4

The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm used in Russian
government standards (see RE'C 4357). It outputs message digests of 256 bits, or 32 octets.
Nettle defines GOSTHASH94 in ‘<nettle/gosthash94.h>’.

struct gosthash94_ctx [Context struct]

GOSTHASH94 _DIGEST_SIZE [Constant]
The size of a GOSTHASH94 digest, i.e. 32.

GOSTHASH94 _DATA_SIZE [Constant]
The internal block size of GOSTHASH94, i.e., 32.

void gosthash94_init (struct gosthash94_ctx *ctx) [Function]
Initialize the GOSTHASH94 state.

void gosthash94_update (struct gosthash94_ctx *ctx, unsigned [Function]
length, const uint8_t *data)
Hash some more data.

void gosthash94_digest (struct gosthash94_ctx *ctx, unsigned [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than GOSTHASH94_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94_init.

6.1.3 The nettle_hash abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’, and is used by Nettle’s implementation of HMAC
(see Section 6.4 [Keyed hash functions], page 34).

struct nettle_hash name context_size digest_size block_size init [Meta struct|
update digest

The last three attributes are function pointers, of types nettle_hash_init_func,

nettle_hash_update_func, and nettle_hash_digest_func. The first argument to

these functions is void * pointer to a context struct, which is of size context_size.

struct nettle_hash nettle_md2 [Constant Struct]
struct nettle_hash nettle_md4 [Constant Struct]
struct nettle_hash nettle_mdb [Constant Struct]
struct nettle_hash nettle_ripemd160 [Constant Struct]
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struct nettle_hash
struct nettle_hash
struct nettle_hash
struct nettle_hash
struct nettle_hash

nettle_shal

nettle_sha224
nettle_sha256
nettle_sha384
nettle_shab12
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Constant Struct
Constant Struct
Constant Struct

Constant Struct

Constant Struct
Constant Struct

struct nettle_hash nettle_sha3_256
struct nettle_hash nettle_gosthash94
These are all the hash functions that Nettle implements.

[ ]
[ ]
[ ]
[Constant Struct]
[ ]
[ ]
[ ]

Nettle also exports a list of all these hashes.

struct nettle_hash ** nettle_hashes [Constant Array]

This list can be used to dynamically enumerate or search the supported algorithms.
NULL-terminated.

6.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the
plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal,
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 6.3 [Cipher modes|, page 28, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never
ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the
key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you're reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
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cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting
the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 (see
Section 6.4 [Keyed hash functions], page 34), or digital signatures like RSA.

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns 0.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.

6.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and variable key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed key
sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’.

struct aes_ctx [Context struct]
AES_BLOCK_SIZE [Constant|
The AES block-size, 16.
AES_MIN_KEY_SIZE [Constant|
AES_MAX_KEY_SIZE [Constant)|
AES_KEY_SIZE [Constant|
Default AES key size, 32.
void aes_set_encrypt_key (struct aes_ctx *ctx, unsigned length, [Function]
const uint8_t *key)
void aes_set_decrypt_key (struct aes_ctx *ctx, unsigned length, [Function]

const uint8-t *key)
Initialize the cipher, for encryption or decryption, respectively.

void aes_invert_key (struct aes_ctx *dst, const struct aes_ctx *src) [Function]
Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. Calling aes_set_encrypt_key and aes_invert_key is
more efficient than calling aes_set_encrypt_key and aes_set_decrypt_key. This
function is mainly useful for applications which needs to both encrypt and decrypt
using the same key.
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void aes_encrypt (struct aes_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void aes_decrypt (struct aes_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8_t *src)
Analogous to aes_encrypt

6.2.2 ARCFOUR

ARCFOUR is a stream cipher, also known under the trade marked name RC4, and it
is one of the fastest ciphers around. A problem is that the key setup of ARCFOUR is
quite weak, you should never use keys with structure, keys that are ordinary passwords,
or sequences of keys like “secret:1”, “secret:2”, .... If you have keys that don’t look like
random bit strings, and you want to use ARCFOUR, always hash the key before feeding it
to ARCFOUR. Furthermore, the initial bytes of the generated key stream leak information
about the key; for this reason, it is recommended to discard the first 512 bytes of the key
stream.

/* A more robust key setup function for ARCFOUR */
void
arcfour_set_key_hashed(struct arcfour_ctx *ctx,
unsigned length, const uint8_t *key)

{
struct sha2b6_ctx hash;
uint8_t digest [SHA256_DIGEST_SIZE];
uint8_t buffer [0x200];

sha256_init (&hash) ;
sha256_update (&hash, length, key);
sha256_digest (&hash, SHA256_DIGEST_SIZE, digest);

arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);
arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);

}
Nettle defines ARCFOUR in ‘<nettle/arcfour.h>’.

struct arcfour_ctx [Context struct]
ARCFOUR_MIN_KEY_SIZE [Constant)]

Minimum key size, 1.

ARCFOUR_MAX_KEY_SIZE [Constant|
Maximum key size, 256.

ARCFOUR_KEY_SIZE [Constant|
Default ARCFOUR key size, 16.
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void arcfour_set_key (struct arcfour_ctx *ctx, unsigned length, [Function]
const uint8-t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void arcfour_crypt (struct arcfour_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encrypt some data. The same function is used for both encryption and decryption.
Unlike the block ciphers, this function modifies the context, so you can split the data
into arbitrary chunks and encrypt them one after another. The result is the same as
if you had called arcfour_crypt only once with all the data.

6.2.3 ARCTWO

ARCTWO (also known as the trade marked name RC2) is a block cipher specified in RFC
2268. Nettle also include a variation of the ARCTWO set key operation that lack one
step, to be compatible with the reverse engineered RC2 cipher description, as described in
a Usenet post to sci.crypt by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging from 1 to 128
octets. Besides the key, ARCTWO also has a second parameter to key setup, the number
of effective key bits, ekb. This parameter can be used to artificially reduce the key size.
In practice, ekb is usually set equal to the input key size. Nettle defines ARCTWO in
‘nettle/arctwo.h>’.

We do not recommend the use of ARCTWO; the Nettle implementation is provided
primarily for interoperability with existing applications and standards.

struct arctwo_ctx [Context struct]
ARCTWO_BLOCK_SIZE [Constant|
The ARCTWO block-size, 8.
ARCTWO_MIN_KEY_SIZE [Constant)|
ARCTWO_MAX_KEY_SIZE [Constant)|
ARCTWO_KEY_SIZE [Constant)]
Default ARCTWO key size, 8.
void arctwo_set_key_ekb (struct arctwo_ctx *ctx, unsigned length, [Function]
const uint8-t *key, unsigned ekb)
void arctwo_set_key (struct arctwo_ctx *ctx, unsigned length, const  [Function]
uint8_t *key)
void arctwo_set_key_gutmann (struct arctwo_ctx *ctx, unsigned [Function]

length, const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
The first function is the most general one, which lets you provide both the variable
size key, and the desired effective key size (in bits). The maximum value for ekb is
1024, and for convenience, ekb = 0 has the same effect as ekb = 1024.

arctwo_set_key(ctx, length, key) is equivalent to arctwo_set_key_ekb(ctx,
length, key, 8*length), and arctwo_set_key_gutmann(ctx, length, key) is
equivalent to arctwo_set_key_ekb(ctx, length, key, 1024)
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void arctwo_encrypt (struct arctwo_ctx *ctx, unsigned length, [Function]
uint8-t *dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void arctwo_decrypt (struct arctwo_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Analogous to arctwo_encrypt

6.2.4 BLOWFISH

BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block size of 64 bits
(8 octets), and a variable key size, up to 448 bits. It has some weak keys. Nettle defines
BLOWFISH in ‘<nettle/blowfish.h>’.

struct blowfish_ctx [Context struct]

BLOWFISH_BLOCK_SIZE [Constant|
The BLOWFISH block-size, 8.

BLOWFISH_MIN_KEY_SIZE [Constant|
Minimum BLOWFISH key size, 8.

BLOWFISH_MAX_KEY_SIZE [Constant)]
Maximum BLOWFISH key size, 56.

BLOWFISH_KEY_SIZE [Constant)|
Default BLOWFISH key size, 16.

int blowfish_set_key (struct blowfish_ctx *ctx, unsigned length, [Function]
const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Checks for weak keys, returning 1 for good keys and 0 for weak keys. Applications
that don’t care about weak keys can ignore the return value.

blowfish_encrypt or blowfish_decrypt with a weak key will crash with an assert
violation.

void blowfish_encrypt (struct blowfish_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void blowfish_decrypt (struct blowfish_ctx *ctx, unsigned length, [Function]
uint8-t *dst, const uint8-t *src)
Analogous to blowfish_encrypt
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6.2.5 Camellia

Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph and Telephone
Corporation, described in RFC3713, and recommended by some Japanese and European au-
thorities as an alternative to AES. The algorithm is patented. The implementation in Nettle
is derived from the implementation released by NTT under the GNU LGPL (v2.1 or later),
and relies on the implicit patent license of the LGPL. There is also a statement of royalty-
free licensing for Camellia at http://www.ntt.co. jp/news/news01e/0104/010417 .html,
but this statement has some limitations which seem problematic for free software.

Camellia uses a the same block size and key sizes as AES: The block size is 128 bits (16

octets), and the supported key sizes are 128, 192, and 256 bits. Nettle defines Camellia in
‘nettle/camellia.h>’.

struct camellia_ctx [Context struct]
CAMELLIA_BLOCK_SIZE [Constant|
The CAMELLIA block-size, 16.
CAMELLTA_MIN_KEY_SIZE [Constant)|
CAMELLTA_MAX_KEY_SIZE [Constant|
CAMELLTA_KEY_SIZE [Constant)]
Default CAMELLIA key size, 32.
void camellia_set_encrypt_key (struct camellia_ctx *ctx, unsigned [Function]
length, const uint8_t *key)
void camellia_set_decrypt_key (struct camellia_ctx *ctx, unsigned [Function]

length, const uint8_t *key)
Initialize the cipher, for encryption or decryption, respectively.

void camellia_invert_key (struct camellia_ctx *dst, const struct [Function]
camellia_ctx *src)

Given a context src initialized for encryption, initializes the context struct dst
for decryption, using the same key. If the same context struct is passed for both
src and dst, it is converted in place. Calling camellia_set_encrypt_key and
camellia_invert_key is more efficient than calling camellia_set_encrypt_key
and camellia_set_decrypt_key. This function is mainly useful for applications
which needs to both encrypt and decrypt using the same key.

void camellia_crypt (struct camellia_ctx *ctx, unsigned length, [Function]
uint8-t *dst, const uint8-t *src)
The same function is used for both encryption and decryption. length must be an
integral multiple of the block size. If it is more than one block, the data is processed
in ECB mode. src and dst may be equal, but they must not overlap in any other
way.

6.2.6 CAST128

CAST-128 is a block cipher, specified in RFC 2144. It uses a 64 bit (8 octets) block size,
and a variable key size of up to 128 bits. Nettle defines cast128 in ‘<nettle/cast128.h>’.
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struct cast128_ctx [Context struct]

CAST128_BLOCK_SIZE [Constant|
The CAST128 block-size, 8.

CAST128_MIN_KEY_SIZE [Constant|
Minimum CAST128 key size, 5.

CAST128_MAX_KEY_SIZE [Constant|
Maximum CAST128 key size, 16.

CAST128_KEY_SIZE [Constant)|
Default CAST128 key size, 16.

void cast128_set_key (struct cast128_ctx *ctx, unsigned length, [Function]
const uint8-t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void cast128_encrypt (struct cast128_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void cast128_decrypt (struct cast128_ctx *ctx, unsigned length, [Function]
uint8-t *dst, const uint8-t *src)
Analogous to cast128_encrypt

6.2.7 DES

DES is the old Data Encryption Standard, specified by NIST. It uses a block size of 64 bits
(8 octets), and a key size of 56 bits. However, the key bits are distributed over 8 octets,
where the least significant bit of each octet may be used for parity. A common way to use
DES is to generate 8 random octets in some way, then set the least significant bit of each
octet to get odd parity, and initialize DES with the resulting key.

The key size of DES is so small that keys can be found by brute force, using specialized
hardware or lots of ordinary work stations in parallel. One shouldn’t be using plain DES
at all today, if one uses DES at all one should be using “triple DES”, see DES3 below.

DES also has some weak keys. Nettle defines DES in ‘<nettle/des.h>’.

struct des_ctx [Context struct]

DES_BLOCK_SIZE [Constant|
The DES block-size, 8.

DES_KEY_SIZE [Constant|
DES key size, 8.

int des_set_key (struct des_ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 for good keys and 0 for
weak keys. Applications that don’t care about weak keys can ignore the return value.
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void des_encrypt (struct des_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des_decrypt (struct des_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8_t *src)
Analogous to des_encrypt

int des_check_parity (unsigned length, const uint8_t *key); [Function]
Checks that the given key has correct, odd, parity. Returns 1 for correct parity, and
0 for bad parity.

void des_fix_parity (unsigned length, uint8_t *dst, const uint8_t [Function]
*src)
Adjusts the parity bits to match DES’s requirements. You need this function if you
have created a random-looking string by a key agreement protocol, and want to use
it as a DES key. dst and src may be equal.

6.2.8 DES3

The inadequate key size of DES has already been mentioned. One way to increase the key
size is to pipe together several DES boxes with independent keys. It turns out that using
two DES ciphers is not as secure as one might think, even if the key size of the combination
is a respectable 112 bits.

The standard way to increase DES’s key size is to use three DES boxes. The mode of
operation is a little peculiar: the middle DES box is wired in the reverse direction. To
encrypt a block with DES3, you encrypt it using the first 56 bits of the key, then decrypt
it using the middle 56 bits of the key, and finally encrypt it again using the last 56 bits of
the key. This is known as “ede” triple-DES, for “encrypt-decrypt-encrypt”.

The “ede” construction provides some backward compatibility, as you get plain single
DES simply by feeding the same key to all three boxes. That should help keeping down the
gate count, and the price, of hardware circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity bits are inserted,
so that keys are represented as 24 octets (192 bits). As a 112 bit key is large enough to make
brute force attacks impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES box in the pipe,
while the middle box is keyed independently. The two-key variant is believed to be secure,
i.e. there are no known attacks significantly better than brute force.

Naturally, it’s simple to implement triple-DES on top of Nettle’s DES functions. Nettle
includes an implementation of three-key “ede” triple-DES, it is defined in the same place
as plain DES, ‘<nettle/des.h>’.

struct des3_ctx [Context struct]

DES3_BLOCK_SIZE [Constant|
The DES3 block-size is the same as DES_BLOCK_SIZE, 8.
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DES3_KEY_SIZE [Constant)|
DES key size, 24.

int des3_set_key (struct des3_ctx *ctx, const uint8-t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 if all three keys are good
keys, and 0 if one or more key is weak. Applications that don’t care about weak keys
can ignore the return value.

For random-looking strings, you can use des_fix_parity to adjust the parity bits before
calling des3_set_key.

void des3_encrypt (struct des3_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des3_decrypt (struct des3_ctx *ctx, unsigned length, uint8_t [Function]
*dst, const uint8_t *src)
Analogous to des_encrypt

6.2.9 Salsa20

Salsa20 is a fairly recent stream cipher designed by D. J. Bernstein. It is built on the
observation that a cryptographic hash function can be used for encryption: Form the hash
input from the secret key and a counter, xor the hash output and the first block of the
plaintext, then increment the counter to process the next block (similar to CTR mode, see
see Section 6.3.2 [CTR], page 30). Bernstein defined an encryption algorithm, Snuffle, in
this way to ridicule United States export restrictions which treated hash functions as nice
and harmless, but ciphers as dangerous munitions.

Salsa20 uses the same idea, but with a new specialized hash function to mix key, block
counter, and a couple of constants. It’s also designed for speed; on x86_64, it is currently
the fastest cipher offered by nettle. It uses a block size of 512 bits (64 octets) and there are
two specified key sizes, 128 and 256 bits (16 and 32 octets).

Caution: The hash function used in Salsa20 is not directly applicable for use as a general
hash function. It’s not collision resistant if arbitrary inputs are allowed, and furthermore,
the input and output is of fixed size.

When using Salsa20 to process a message, one specifies both a key and a nonce, the
latter playing a similar role to the initialization vector (IV) used with CBC or CTR mode.
For this reason, Nettle uses the term IV to refer to the Salsa20 nonce. One can use the same
key for several messages, provided one uses a unique random iv for each message. The iv is
64 bits (8 octets). The block counter is initialized to zero for each message, and is also 64
bits (8 octets). Nettle defines Salsa20 in ‘<nettle/salsa20.h>’.

struct salsa20_ctx [Context struct]
SALSA20_MIN_KEY_SIZE [Constant)|
SALSA20_MAX_KEY_SIZE [Constant|

The two supported key sizes, 16 and 32 octets.
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SALSA20_KEY_SIZE [Constant)|
Recommended key size, 32.

SALSA20_BLOCK_SIZE [Constant|
Salsa20 block size, 64.

SALSA20_IV_SIZE [Constant|
Size of the 1V, 8.

void salsa20_set_key (struct salsa20_ctx *ctx, unsigned length, [Function]
const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Before using the cipher, you must also call salsa20_set_iv, see below.

void salsa20_set_iv (struct salsa20_ctx *ctx, const uint8_t *iv) [Function]
Sets the IV. It is always of size SALSA20_IV_SIZE, 8 octets. This function also ini-
tializes the block counter, setting it to zero.

void salsa20_crypt (struct salsa20_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using salsa20. When a message is en-
crypted using a sequence of calls to salsa20_crypt, all but the last call must use a
length that is a multiple of SALSA20_BLOCK_SIZE.

The full salsa20 cipher uses 20 rounds of mixing.  Variants of Salsa20 with
fewer rounds are possible, and the 12-round variant is specified by eSTREAM, see
http://wuw.ecrypt.eu.org/stream/finallist.html. Nettle calls this variant

salsa20r12. It uses the same context struct and key setup as the full salsa20 cipher, but
a separate function for encryption and decryption.

void salsa20ri2_crypt (struct salsa20_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using salsa20 reduced to 12 rounds.

6.2.10 SERPENT

SERPENT is one of the AES finalists, designed by Ross Anderson, Eli Biham and Lars
Knudsen. Thus, the interface and properties are similar to AES’. One peculiarity is that it
is quite pointless to use it with anything but the maximum key size, smaller keys are just
padded to larger ones. Nettle defines SERPENT in ‘<nettle/serpent.h>’.

struct serpent_ctx [Context struct]
SERPENT_BLOCK_SIZE [Constant)|
The SERPENT block-size, 16.

SERPENT_MIN_KEY_SIZE [Constant)|
Minimum SERPENT key size, 16.

SERPENT_MAX_KEY_SIZE [Constant|
Maximum SERPENT key size, 32.
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SERPENT_KEY_SIZE [Constant)|
Default SERPENT key size, 32.

void serpent_set_key (struct serpent_ctx *ctx, unsigned length, [Function]
const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void serpent_encrypt (struct serpent_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void serpent_decrypt (struct serpent_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Analogous to serpent_encrypt

6.2.11 TWOFISH

Another AES finalist, this one designed by Bruce Schneier and others. Nettle defines it in
‘nettle/twofish.h>’.

struct twofish_ctx [Context struct]

TWOFISH_BLOCK_SIZE [Constant|
The TWOFISH block-size, 16.

TWOFISH_MIN_KEY_SIZE [Constant|
Minimum TWOFISH key size, 16.

TWOFISH_MAX_KEY_SIZE [Constant|
Maximum TWOFISH key size, 32.

TWOFISH_KEY_SIZE [Constant)|
Default TWOFISH key size, 32.

void twofish_set_key (struct twofish_ctx *ctx, unsigned length, [Function]
const uint8-t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void twofish_encrypt (struct twofish_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void twofish_decrypt (struct twofish_ctx *ctx, unsigned length, [Function]
uint8-t *dst, const uint8-t *src)
Analogous to twofish_encrypt
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6.2.12 struct nettle_cipher

Nettle includes a struct including information about some of the more regular cipher func-
tions. It should be considered a little experimental, but can be useful for applications
that need a simple way to handle various algorithms.
‘nettle/nettle-meta.h>’.

struct nettle_cipher name context_size block_size key_size
set_encrypt_key set_decrypt_key encrypt decrypt

28

Nettle defines these structs in

[Meta struct|

The last four attributes are function pointers, of types nettle_set_key_func and
nettle_crypt_func. The first argument to these functions is a void * pointer to a
context struct, which is of size context_size.

struct
struct
struct
struct
struct
struct
struct
struct
struct

nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher
nettle_cipher

nettle_aes128
nettle_aes192
nettle_aes256
nettle_arctwo40
nettle_arctwo64
nettle_arctwol28
nettle_arctwo_gutmannl28
nettle_arcfour128
nettle_camellial28

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

struct nettle_cipher nettle_camellial92

struct nettle_cipher nettle_camellia256 Constant Struct
struct nettle_cipher nettle_cast128 Constant Struct
struct nettle_cipher nettle_serpentl128 Constant Struct
struct nettle_cipher nettle_serpent192 Constant Struct
struct nettle_cipher nettle_serpent256 Constant Struct
struct nettle_cipher nettle_twofish128 Constant Struct
struct nettle_cipher nettle_twofish192 Constant Struct

struct

nettle_cipher

nettle_twofish256

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[Constant Struct]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

Constant Struct

Nettle includes such structs for all the regular ciphers, i.e. ones without weak keys or
other oddities.

Nettle also exports a list of all these ciphers without weak keys or other oddities.

struct nettle_cipher ** nettle_ciphers
This list can be used to dynamically enumerate or search the supported algorithms.

[Constant Array]

NULL-terminated.

6.3 Cipher modes

Cipher modes of operation specifies the procedure to use when encrypting a message
that is larger than the cipher’s block size. As explained in See Section 6.2 [Cipher
functions|, page 17, splitting the message into blocks and processing them independently
with the block cipher (Electronic Code Book mode, ECB) leaks information. Besides
ECB, Nettle provides three other modes of operation: Cipher Block Chaining (CBC),
Counter mode (CTR), and Galois/Counter mode (GCM). CBC is widely used, but
there are a few subtle issues of information leakage, see, e.g., SSH CBC vulnerability
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(http://www.kDb.cert.org/vuls/id/958563). CTR and GCM were standardized more
recently, and are believed to be more secure. GCM includes message authentication; for
the other modes, one should always use a MAC (see Section 6.4 [Keyed hash functions],
page 34) or signature to authenticate the message.

6.3.1 Cipher Block Chaining

When using CBC mode, plaintext blocks are not encrypted independently of each other,
like in Electronic Cook Book mode. Instead, when encrypting a block in CBC mode, the
previous ciphertext block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an IV, or Initialization Vector, is
used as the “previous ciphertext block”. The IV should be chosen randomly, but it need
not be kept secret, and can even be transmitted in the clear together with the encrypted
data.

In symbols, if E_k is the encryption function of a block cipher, and IV is the initialization
vector, then n plaintext blocks M_1,. .. M_n are transformed into n ciphertext blocks C_1,. ..
C_n as follows:

C_1 = E_k(IV XOR M_1)
C_2 = E_k(C_1 XOR M_2)

C_n

E_k(C_(n-1) XOR M_n)

Nettle’s includes two functions for applying a block cipher in Cipher Block Chaining
(CBC) mode, one for encryption and one for decryption. These functions uses void * to
pass cipher contexts around.

void cbc_encrypt (void *ctx, nettle_crypt_func £, unsigned [Function]
block_size, uint8_t *iv, unsigned length, uint8_t *dst, const uint8_t
*src)

void cbc_decrypt (void *ctx, void (*f)(), unsigned block_size, [Function]

uint8_t *iv, unsigned length, uint8_t *dst, const uint8_t *src)
Applies the encryption or decryption function f in CBC mode. The final ciphertext
block processed is copied into iv before returning, so that large message be processed
be a sequence of calls to cbc_encrypt. The function f is of type

void f (void *ctx, unsigned length, uint8_t dst, const uint8_t *src),

and the cbc_encrypt and cbc_decrypt functions pass their argument ctx on to f.
There are also some macros to help use these functions correctly.

CBC_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t iv[block_size];
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It can be used to define a CBC context struct, either directly,
struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;
or to give it a struct tag,
struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);

CBC_SET_IV (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CBC_CTX, and the second
is a pointer to an Initialization Vector (IV) that is copied into that context.

CBC_ENCRYPT (ctx, f, length, dst, src) [Macro]

CBC_DECRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cbc_encrypt and cbc_decrypt. The first argument is a
pointer to a context struct as defined by CBC_CTX, and the second argument is an
encryption or decryption function following Nettle’s conventions. The last three ar-
guments define the source and destination area for the operation.

These macros use some tricks to make the compiler display a warning if the types of f and
ctx don’t match, e.g. if you try to use an struct aes_ctx context with the des_encrypt
function.

6.3.2 Counter mode

Counter mode (CTR) uses the block cipher as a keyed pseudo-random generator. The
output of the generator is XORed with the data to be encrypted. It can be understood as
a way to transform a block cipher to a stream cipher.

The message is divided into n blocks M_1,... M_n, where M_n is of size m which may be
smaller than the block size. Except for the last block, all the message blocks must be of
size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IC is the initial counter, then the n
plaintext blocks are transformed into n ciphertext blocks C_1,... C_n as follows:
C_1 = E_k(IC) XOR M_1
C_2 = E_k(IC + 1) XOR M_2

C_(n-1) = E_k(IC + n - 2) X0R M_(n-1)
Cn=EXX(IC+mn-1) [1..m] XOR M_n

The IC is the initial value for the counter, it plays a similar réle as the IV for CBC. When
adding, IC + x, IC is interpreted as an integer, in network byte order. For the last block,
E_k(IC+n - 1) [1..m] means that the cipher output is truncated to m bytes.

void ctr_crypt (void *ctx, nettle_crypt_func f, unsigned block_size, [Function]
uint8_t *ctr, unsigned length, uint8_t *dst, const uint8_-t *src)
Applies the encryption function f in CTR mode. Note that for CTR mode, encryption
and decryption is the same operation, and hence f should always be the encryption
function for the underlying block cipher.

When a message is encrypted using a sequence of calls to ctr_crypt, all but the last
call must use a length that is a multiple of the block size.
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Like for CBC, there are also a couple of helper macros.

CTR_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t ctr[block_size];
}

CTR_SET_COUNTER (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CTR_CTX, and the second
is a pointer to an initial counter that is copied into that context.

CTR_CRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke ctr_crypt. The first argument is a pointer to a context struct
as defined by CTR_CTX, and the second argument is an encryption function following
Nettle’s conventions. The last three arguments define the source and destination area
for the operation.

6.3.3 Galois counter mode

Galois counter mode is the combination of counter mode with message authentication
based on universal hashing. The main objective of the design is to provide high
performance for hardware implementations, where other popular MAC algorithms
(see Section 6.4 [Keyed hash functions], page 34 becomes a bottleneck for high-speed
hardware implementations. It was proposed by David A. McGrew and John Viega
in 2005, and recommended by NIST in 2007, NIST Special Publication 800-38D
(http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf). It is
constructed on top of a block cipher which must have a block size of 128 bits.

GCM is applied to messages of arbitrary length. The inputs are:
e A key, which can be used for many messages.
e An initialization vector (IV) which must be unique for each message.

e Additional authenticated data, which is to be included in the message authentication,
but not encrypted. May be empty.

e The plaintext. Maybe empty.
The outputs are a ciphertext, of the same length as the plaintext, and a message digest
of length 128 bits. Nettle’s support for GCM consists of a low-level general interface, some

convenience macros, and specific functions for GCM using AES as the underlying cipher.
These interfaces are defined in ‘<nettle/gcm.h>’

6.3.3.1 General GCM interface

struct gcm_key [Context struct]
Message independent hash sub-key, and related tables.

struct gcm_ctx [Context struct]
Holds state corresponding to a particular message.
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GCM_BLOCK_SIZE [Constant)|
GCM’s block size, 16.

GCM_IV_SIZE [Constant|
Recommended size of the IV, 12. Other sizes are allowed.

void gcm_set_key (struct gem_key *key, void *cipher, [Function]
nettle_crypt_func *f)
Initializes key. cipher gives a context struct for the underlying cipher, which must
have been previously initialized for encryption, and f is the encryption function.

void gecm_set_iv (struct gem_ctx *ctx, const struct gecm_key *key, [Function]
unsigned length, const uint8_t *iv)
Initializes ctx using the given IV. The key argument is actually needed only if length
differs from GCM_IV_SIZE.

void gcm_update (struct gem_ctx *ctx, const struct gecm_key *key, [Function]
unsigned length, const uint8_t *data)
Provides associated data to be authenticated. If used, must be called before gcm_
encrypt or gcm_decrypt. All but the last call for each message must use a length
that is a multiple of the block size.

void gcm_encrypt (struct gem_ctx *ctx, const struct gem_key *key [Function]
void *cipher, nettle_crypt_func *f, unsigned length, uint8_-t *dst, const
uint8_t *src)
void gem_decrypt (struct gem_ctx *ctx, const struct gem_key *key, [Function]
void *cipher, nettle_crypt_func *f, unsigned length, uint8_t *dst, const
uint8_t *src)
Encrypts or decrypts the data of a message. cipher is the context struct for the
underlying cipher and f is the encryption function. All but the last call for each
message must use a length that is a multiple of the block size.

void gecm_digest (struct gem_ctx *ctx, const struct gem_key *key, void  [Function]
*cipher, nettle_crypt_func *f, unsigned length, uint8_t *digest)

Extracts the message digest (also known “authentication tag”). This is the final

operation when processing a message. length is usually equal to GCM_BLOCK_SIZE,

but if you provide a smaller value, only the first length octets of the digest are written.

To encrypt a message using GCM, first initialize a context for the underlying block cipher
with a key to use for encryption. Then call the above functions in the following order: gem_
set_key, gcm_set_iv, gcm_update, gcm_encrypt, gem_digest. The decryption procedure
is analogous, just calling gcm_decrypt instead of gcm_encrypt (note that GCM decryption
still uses the encryption function of the underlying block cipher). To process a new message,
using the same key, call gcm_set_iv with a new iv.

6.3.3.2 GCM helper macros

The following macros are defined.



Chapter 6: Reference 33

GCM_CTX (context_type) [Macro]
This defines an all-in-one context struct, including the context of the underlying
cipher, the hash sub-key, and the per-message state. It expands to

{
context_type cipher;
struct gcm_key key;
struct gcm_ctx gcm;
+

Example use:
struct gcm_aes_ctx GCM_CTX(struct aes_ctx);

The following macros operate on context structs of this form.

GCM_SET_KEY (ctx, set_key, encrypt, length, data) [Macro]
First argument, ctx, is a context struct as defined by GCM_CTX. set_key and en-
crypt are functions for setting the encryption key and for encrypting data using the
underlying cipher. length and data give the key.

GCM_SET_IV (ctx, length, data) [Macro]
First argument is a context struct as defined by GCM_CTX. length and data give the
initialization vector (IV).

GCM_UPDATE (ctx, length, data) [Macro]
Simpler way to call gcm_update. First argument is a context struct as defined by
GCM_CTX

GCM_ENCRYPT (ctx, encrypt, length, dst, src) [Macro]

GCM_DECRYPT (ctx, encrypt, length, dst, src) [Macro]

GCM_DIGEST (ctx, encrypt, length, digest) [Macro]

Simpler way to call gcm_encrypt, gcm_decrypt or gcm_digest. First argument is a
context struct as defined by GCM_CTX. Second argument, encrypt, is a pointer to the
encryption function of the underlying cipher.

6.3.3.3 GCM-AES interface

The following functions implement the common case of GCM using AES as the underlying
cipher.

struct gcm_aes_ctx [Context struct]
The context struct, defined using GCM_CTX.

void gcm_aes_set_key (struct gcm-aes_ctx *ctx, unsigned length, [Function]
const uint8_-t *key)
Initializes ctx using the given key. All valid AES key sizes can be used.

void gcm_aes_set_iv (struct gcm-aes_ctx *ctx, unsigned length, [Function]
const uint8-t *iv)
Initializes the per-message state, using the given IV.
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void gcm_aes_update (struct gecm-aes_ctx *ctx, unsigned length, [Function]
const uint8_-t *data)
Provides associated data to be authenticated. If used, must be called before gcm_
aes_encrypt or gcm_aes_decrypt. All but the last call for each message must use a
length that is a multiple of the block size.

void gcm_aes_encrypt (struct gem_aes_ctx *ctx, unsigned length, [Function]
uint8_t *dst, const uint8_t *src)
void gcm_aes_decrypt (struct gecm-aes_ctx *ctx, unsigned length, [Function]

uint8-t *dst, const uint8-t *src)
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

void gcm_aes_digest (struct gecm_aes_ctx *ctx, unsigned length, [Function]
uint8_t *digest)

Extracts the message digest (also known “authentication tag”). This is the final

operation when processing a message. length is usually equal to GCM_BLOCK_SIZE,

but if you provide a smaller value, only the first length octets of the digest are written.

6.4 Keyed Hash Functions

A keyed hash function, or Message Authentication Code (MAC) is a function that takes a
key and a message, and produces fixed size MAC. It should be hard to compute a message
and a matching MAC without knowledge of the key. It should also be hard to compute the
key given only messages and corresponding MACs.

Keyed hash functions are useful primarily for message authentication, when Alice and
Bob shares a secret: The sender, Alice, computes the MAC and attaches it to the message.
The receiver, Bob, also computes the MAC of the message, using the same key, and compares
that to Alice’s value. If they match, Bob can be assured that the message has not been
modified on its way from Alice.

However, unlike digital signatures, this assurance is not transferable. Bob can’t show
the message and the MAC to a third party and prove that Alice sent that message. Not
even if he gives away the key to the third party. The reason is that the same key is used on
both sides, and anyone knowing the key can create a correct MAC for any message. If Bob
believes that only he and Alice knows the key, and he knows that he didn’t attach a MAC
to a particular message, he knows it must be Alice who did it. However, the third party
can’t distinguish between a MAC created by Alice and one created by Bob.

Keyed hash functions are typically a lot faster than digital signatures as well.

6.4.1 HMAC

One can build keyed hash functions from ordinary hash functions. Older constructions
simply concatenate secret key and message and hashes that, but such constructions have
weaknesses. A better construction is HMAC, described in RFC 2104.

For an underlying hash function H, with digest size 1 and internal block size b, HMAC-
H is constructed as follows: From a given key k, two distinct subkeys k_i and k_o are
constructed, both of length b. The HMAC-H of a message m is then computed as H(k_o |
H(k_i | m)), where | denotes string concatenation.
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HMAC keys can be of any length, but it is recommended to use keys of length 1, the
digest size of the underlying hash function H. Keys that are longer than b are shortened to
length 1 by hashing with H, so arbitrarily long keys aren’t very useful.

Nettle’s HMAC functions are defined in ‘<nettle/hmac.h>’. There are abstract functions
that use a pointer to a struct nettle_hash to represent the underlying hash function and
void * pointers that point to three different context structs for that hash function. There are
also concrete functions for HMAC-MD5, HMAC-RIPEMD160 HMAC-SHA1, HMAC-SHA256,
and HMAC-SHA512. First, the abstract functions:

void hmac_set_key (void *outer, void *inner, void *state, const [Function]
struct nettle_hash *H, unsigned length, const uint8_t *key)
Initializes the three context structs from the key. The outer and inner contexts
corresponds to the subkeys k_o and k_i. state is used for hashing the message, and
is initialized as a copy of the inner context.

void hmac_update (void *state, const struct nettle_hash *H, unsigned [Function]
length, const uint8_t *data)
This function is called zero or more times to process the message. Actually,
hmac_update(state, H, length, data) is equivalent to H->update(state,
length, data), so if you wish you can use the ordinary update function of the
underlying hash function instead.

void hmac_digest (const void *outer, const void *inner, void [Function]
*state, const struct nettle_hash *H, unsigned length, uint8_t *digest)
Extracts the MAC of the message, writing it to digest. outer and inner are not
modified. length is usually equal to H->digest_size, but if you provide a smaller
value, only the first length octets of the MAC are written.
This function also resets the state context so that you can start over processing a new
message (with the same key).

Like for CBC, there are some macros to help use these functions correctly.

HMAC_CTX (type) [Macro]
Expands to

{
type outer;
type inner;
type state;
b

It can be used to define a HMAC context struct, either directly,
struct HMAC_CTX(struct md5_ctx) ctx;

or to give it a struct tag,
struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);

HMAC_SET_KEY (ctx, H, length, key) [Macro]
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a const
struct nettle_hash describing the underlying hash function (so it must match the
type of the components of ctx). The last two arguments specify the secret key.
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HMAC_DIGEST (ctx, H, length, digest) [Macro]
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a
const struct nettle_hash describing the underlying hash function. The last two
arguments specify where the digest is written.

Note that there is no HMAC_UPDATE macro; simply call hmac_update function directly, or
the update function of the underlying hash function.

6.4.2 Concrete HMAC functions

Now we come to the specialized HMAC functions, which are easier to use than the general
HMAC functions.

6.4.2.1 HMAC-MD5

struct hmac_md5_ctx [Context struct]

void hmac_md5_set_key (struct hmac_md5_ctx *ctx, unsigned [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_md5_update (struct hmac.md5_ctx *ctx, unsigned length, [Function]
const uint8_t *data)
Process some more data.

void hmac_md5_digest (struct hmac.md5_ctx *ctx, unsigned length, [Function]
uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than MD5_DIGEST_SIZE,
in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.
6.4.2.2 HMAC-RIPEMD160

struct hmac_ripemd160_ctx [Context struct]

void hmac_ripemd160_set_key (struct hmac_ripemd160_ctx *ctx, [Function]
unsigned key_length, const uint8_t *key)
Initializes the context with the key.

void hmac_ripemd160_update (struct hmac_ripemdl160_ctx *ctx, [Function]
unsigned length, const uint8_t *data)
Process some more data.

void hmac_ripemd160_digest (struct hmac_ripemdl160_ctx *ctx, [Function]
unsigned length, uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than RIPEMD160_
DIGEST_SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.
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6.4.2.3 HMAC-SHA1

struct hmac_shal_ctx [Context struct]

void hmac_shal_set_key (struct hmac_shal_ctx *ctx, unsigned [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_shal_update (struct hmac_shal_ctx *ctx, unsigned [Function]
length, const uint8_t *data)
Process some more data.

void hmac_shal_digest (struct hmac_shal_ctx *ctx, unsigned [Function]
length, uint8_-t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA1_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

6.4.2.4 HMAC-SHA256

struct hmac_sha256_ctx [Context struct]

void hmac_sha256_set_key (struct hmac_sha256_ctx *ctx, unsigned [Function]
key_length, const uint8_t *key)
Initializes the context with the key.

void hmac_sha256_update (struct hmac_sha256_ctx *ctx, unsigned [Function]
length, const uint8_t *data)
Process some more data.

void hmac_sha256_digest (struct hmac_sha256_ctx *ctx, unsigned [Function]
length, uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA256_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

6.4.2.5 HMAC-SHA512

struct hmac_shab12_ctx [Context struct]

void hmac_shabl2_set_key (struct hmac_sha512_ctx *ctx, unsigned [Function]
key_length, const uint8_t *key)
Initializes the context with the key.

void hmac_shab12_update (struct hmac_sha512_ctx *ctx, unsigned [Function]
length, const uint8_t *data)
Process some more data.

void hmac_shabl2_digest (struct hmac_sha512_ctx *ctx, unsigned [Function]
length, uint8_-t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA512_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.
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6.4.3 UMAC

UMAC is a message authentication code based on universal hashing, and designed for high
performance on modern processors (in contrast to GCM, See Section 6.3.3 [GCM], page 31,
which is designed primarily for hardware performance). On processors with good integer
multiplication performance, it can be 10 times faster than SHA256 and SHA512. UMAC is
specified in RFC 4418.

The secret key is always 128 bits (16 octets). The key is used as an encryption key for
the AES block cipher. This cipher is used in counter mode to generate various internal
subkeys needed in UMAC. Messages are of arbitrary size, and for each message, UMAC also
needs a unique nonce. Nonce values must not be reused for two messages with the same
key, but they need not be kept secret.

The nonce must be at least one octet, and at most 16; nonces shorter than 16 octets are
zero-padded. Nettle’s implementation of UMAC increments the nonce for automatically each
message, so explicitly setting the nonce for each message is optional. This auto-increment
uses network byte order and it takes the length of the nonce into acount. E.g., if the initial
nonce is “abc” (3 octets), this value is zero-padded to 16 octets for the first message. For the
next message, the nonce is incremented to “abd”, and this incremented value is zero-padded
to 16 octets.

UMAC is defined in four variants, for different output sizes: 32 bits (4 octest), 64 bits
(8 octets), 96 bits (12 octets) and 128 bits (16 octets), corresponding to different tradeoffs
between speed and security. Using a shorter output size sometimes (but not always!) gives
the same result as using a longer output size and truncating the result. So it is important to
use the right variant. For consistency with other hash and MAC functions, Nettle’s _digest
functions for UMAC accept a length parameter so that the output can be truncated to any
desired size, but it is recommended to stick to the specified output size and select the umac
variant corresponding to the desired size.

The internal block size of UMAC is 1024 octets, and it also generates more than 1024
bytes of subkeys. This makes the size of the context struct a bit larger than other hash
functions and MAC algorithms in Nettle.

Nettle defines UMAC in ‘<nettle/umac.h>’.

struct umac32_ctx [Context struct]

struct umac64_ctx [Context struct]

struct umac96_ctx [Context struct]

struct umacl28_ctx [Context struct]
Each UMAC variant uses its own context struct.

UMAC_KEY_SIZE [Constant]
The UMAC key size, 16.

UMAC32_DIGEST_SIZE [Constant|
The size of an UMAC32 digest, 4.

UMAC64_DIGEST_SIZE [Constant)|

The size of an UMAC64 digest, 8.

UMAC96 _DIGEST_SIZE [Constant)
The size of an UMAC96 digest, 12.
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UMAC128_DIGEST_SIZE [Constant)|

The size of an UMAC128 digest, 16.

UMAC128_DATA_SIZE [Constant]

void
void
void
void

void

void

void

void

void

void

void

void

void

void

void

void

The internal block size of UMAC.

umac32_set_key (struct umac32_ctx *ctx, const 